Search results for "Condensed Matter::Materials Science"

showing 10 items of 1383 documents

Electromagnetic behaviour of superconductive amorphous metals

2005

The penetration depth of the magnetic field into an amorphous superconductor is calculated. The ratio of the London penetration depth δL to the electron free path le under zero temperature is above unity for almost all amorphous metals. That is why pure metals, in a superconducting state, change from type I superconductors to type II superconductors during the crystalline–amorphous transition.

SuperconductivityMaterials scienceAmorphous metalCondensed matter physicsMean free pathLondon penetration depthCondensed Matter PhysicsCondensed Matter::Disordered Systems and Neural NetworksAmorphous solidCondensed Matter::Materials ScienceMeissner effectCondensed Matter::SuperconductivityGeneral Materials SciencePenetration depthType-II superconductorJournal of Physics: Condensed Matter
researchProduct

Analysis of static friction and elastic forces in a nanowire bent on a flat surface: A comparative study

2014

ZnO nanowires bent to a complex shape and held in place by static friction force from supporting flat surface are investigated experimentally and theoretically. The complex shapes are obtained by bending the nanowires inside a scanning electron microscope with a sharp tip attached to a nanopositioner. Several methods previously described in the literature are applied along with author's original method to calculate the distributed friction force and stored elastic energy in the nanowires from the bending profile. This comparative study evidences the importance of the usage of appropriate models for accurate analysis of the nanowires profile. It is demonstrated that incomplete models can lea…

Materials sciencebusiness.industryScanning electron microscopeMechanical EngineeringBent molecular geometryNanowireElastic energySurfaces and InterfacesBendingStructural engineeringMechanicsStatic frictionSurfaces Coatings and FilmsCondensed Matter::Materials ScienceMechanics of MaterialsElasticity (economics)businessOrder of magnitudeTribology International
researchProduct

Ni61Mössbauer study of the hyperfine magnetic field near the Ni surface

1987

$^{61}\mathrm{Ni}$ M\"ossbauer measurements have been performed at 4.2 K on spherical Ni particles covered with a protective layer of SiO, with average diameter of 500 and 50 \AA{}. The hyperfine magnetic field at $^{61}\mathrm{Ni}$ nuclei for 500-\AA{} particles has been found to be 78.3(4) kOe, compared with the field for Ni foil of 75.0(2) kOe. The small difference is due to the demagnetization and dipolar fields in 500-\AA{} particles. The spectrum of 50-\AA{} particles has a surface component with the corresponding value of the hyperfine magnetic field of 40.3(5.4) kOe. This strongly indicates that, in accordance with recent theoretical studies, there is a decrease of the hyperfine mag…

Materials scienceMössbauer effectField (physics)Condensed matter physicsDemagnetizing fieldchemistry.chemical_elementMagnetic fieldCondensed Matter::Materials ScienceDipoleNickelchemistryMössbauer spectroscopyAtomic physicsHyperfine structurePhysical Review B
researchProduct

Surface magnetism studied by photoelectron spectromicroscopy with high spatial and time resolution

2004

Abstract Photoemission electron microscopy (PEEM) is widely used for the study of magnetic surfaces and thin films. Ferromagnetic and antiferromagnetic microstructures are investigated exploiting magnetic circular and linear dichroism in the soft X-ray range using tuneable synchrotron radiation. Local dichroism spectroscopy gives access to magnetic moments of the elements in compounds or multilayer materials. Beyond these achievements, the method bears a high future potential with respect to an increased lateral resolution via aberration correction of the electron optics and a high time resolution in the 100 ps range for the study of dynamic processes. In addition, photoelectron spin polari…

RadiationMaterials scienceMagnetic momentCondensed matter physicsMagnetismAnalytical chemistrySynchrotron radiationDichroismCondensed Matter PhysicsLinear dichroismAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials SciencePhotoemission electron microscopyFerromagnetismElectron opticsPhysical and Theoretical ChemistrySpectroscopyJournal of Electron Spectroscopy and Related Phenomena
researchProduct

Photoluminescence of Ga-face AlGaN/GaN single heterostructures

2001

Abstract The radiative recombination in Ga-face Al 0.30 Ga 0.70 N/GaN single heterostructures (SHs) was studied by photoluminescence (PL) measurements. An energy shift of the excitonic transitions toward higher energies was observed, indicating the presence of residual compressive strain in the GaN layer. In addition to these exciton lines, a broad band energetically localized between the exciton lines and the LO-phonon replica was noticed in the undoped SH. From its energy position, excitation power dependence, as well as temperature behaviour, we have attributed this luminescence to the H -band (HB), which is representative of the two-dimensional electron gas (2DEG) recombination.

PhotoluminescenceMaterials scienceCondensed matter physicsCondensed Matter::OtherMechanical EngineeringExcitonHeterojunctionCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsCondensed Matter::Materials ScienceMechanics of MaterialsGeneral Materials ScienceSpontaneous emissionFermi gasLuminescenceExcitationRecombinationMaterials Science and Engineering: B
researchProduct

A comprehensive study of structure and properties of nanocrystalline zinc peroxide

2022

Abstract Nanocrystalline zinc peroxide (nano-ZnO2) was synthesized through a hydrothermal process and comprehensively studied using several experimental techniques. Its crystal structure was characterized by X-ray diffraction, and the average crystallite size of 22 nm was estimated by Rietveld refinement. The temperature-dependent local environment around zinc atoms was reconstructed using reverse Monte Carlo (RMC) analysis from the Zn K-edge X-ray absorption spectra. The indirect band gap of about 4.6 eV was found using optical absorption spectroscopy. Lattice dynamics of nano-ZnO2 was studied by infrared and Raman spectroscopy. In situ Raman measurements indicate the stability of nano-ZnO…

Materials scienceAbsorption spectroscopyRietveld refinementAnalytical chemistrychemistry.chemical_elementGeneral ChemistryZincCondensed Matter PhysicsNanocrystalline materialCondensed Matter::Materials Sciencechemistry.chemical_compoundsymbols.namesakechemistrysymbolsGeneral Materials ScienceZinc peroxideDirect and indirect band gapsCrystalliteRaman spectroscopyJournal of Physics and Chemistry of Solids
researchProduct

Certain doping concentrations caused half-metallic graphene

2017

This work is supported by National Natural Science Foundation of China (Grant No. 21173096).

Spin polarizationMaterials scienceChemistry(all)02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionCondensed Matter::Materials ScienceHalf-metallawCondensed Matter::SuperconductivityPhysics::Atomic and Molecular Clusters:NATURAL SCIENCES:Physics [Research Subject Categories]Spin (physics)DopantCondensed matter physicsSpin polarizationGrapheneDopingGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCondensed Matter::Strongly Correlated ElectronsDensity functional theoryHalf-metalDopant concentrationGraphene0210 nano-technologyGraphene nanoribbonsJournal of Saudi Chemical Society
researchProduct

Influence of semiconducting electrodes on properties of thin ferroelectric films

2005

The influence of semiconducting electrodes on the properties of thin ferroelectric films is considered within the framework of the phenomenological Ginzburg-Landau theory. The contribution of the electric field produced by charges in the electrodes allowing for the screening length of the carriers is included in the functional of the free energy and so in the Euler-Lagrange equation for the film's polarization. Application of the variational method to the solution of this equation allows the transformation of the free energy functional into a conventional type of free energy with renormalized coefficients. The obtained dependence of the coefficients on the film thickness, temperature, elect…

PhysicsCondensed Matter::Materials SciencePhase transitionCondensed matter physicsElectric fieldPhenomenological modelGinzburg–Landau theoryDielectricThin filmCondensed Matter PhysicsFerroelectricityElectronic Optical and Magnetic MaterialsEnergy functionalphysica status solidi (b)
researchProduct

Excitonic Transitions in Homoepitaxial GaN

2001

The photoluminescence spectrum of a high quality homoepitaxial GaN film has been measured as a function of temperature. As temperature increases the recombination of free excitons dominates the spectra. Their energy shift has successfully fitted in that temperature range by means of the Bose-Einstein expression instead of Varshni's relationship. Values for the parameters of both semi-empirical relations describing the energy shift are reported and compared with the literature.

PhotoluminescenceCondensed matter physicsChemistryExcitonAtmospheric temperature rangeCondensed Matter PhysicsSpectral lineElectronic Optical and Magnetic Materialslaw.inventionCondensed Matter::Materials Sciencesymbols.namesakeQuality (physics)lawsymbolsMetalorganic vapour phase epitaxyRaman spectroscopyBose–Einstein condensatephysica status solidi (b)
researchProduct

Combining EXAFS and XRay Powder Diffraction to Solve Structures Containing Heavy Atoms

2005

Determination of structures using x-ray powder diffraction is complicated if the reflection intensities are mainly influenced by the scattering from heavy atoms and the atomic coordinates of light atoms remain uncertain. A method like EXAFS, which is sensitive to short range order, gives reliable atomic distances in the surroundings of heavy atoms with a precision of ±0.02 A. The probability for obtaining the complete structure from x-ray powder diffraction increases if one includes parameters derived from EXAFS measurements as restraints during the procedure of structure solving. We demonstrate the potential of combining EXAFS and x-ray powder diffraction by solving the structure UO2[H2AsO…

Materials scienceExtended X-ray absorption fine structureScatteringCondensed Matter PhysicsMolecular physicsAtomic and Molecular Physics and OpticsCondensed Matter::Materials SciencePolyhedronReflection (mathematics)Condensed Matter::SuperconductivityDirect methodsAtomStructure factorMathematical PhysicsPowder diffractionPhysica Scripta
researchProduct